取消
清空記錄
歷史記錄
清空記錄
歷史記錄
大小鼠生命體征監(jiān)護(hù)儀是以無(wú)創(chuàng)的方式測(cè)量實(shí)驗(yàn)動(dòng)物(幼鼠,小鼠,大鼠,豚鼠,兔子等小型動(dòng)物)的血氧飽和度,脈搏頻率,呼吸頻率,脈搏幅度,呼吸幅度,體溫等多種參數(shù)。
所有測(cè)量都是通過(guò)一個(gè)無(wú)創(chuàng)的感應(yīng)器完成,準(zhǔn)確、方便、高效。
型號(hào):MouseOx 正在對(duì)麻醉狀態(tài)下的小鼠進(jìn)行測(cè)試
有多種探頭可供選擇:
· 根據(jù)實(shí)驗(yàn)需求:可選擇大鼠型探頭、小鼠型探頭;
· 根據(jù)動(dòng)物狀態(tài):可選擇清醒活動(dòng)狀態(tài)連續(xù)測(cè)量和麻醉(或手術(shù))狀態(tài)測(cè)量探頭;
· 根據(jù)動(dòng)物數(shù)量:有多通道適配器可供選擇,同時(shí)檢測(cè)多只動(dòng)物的生命體征;
· 根據(jù)使用環(huán)境:可選擇核磁環(huán)境適用的無(wú)磁探頭;
主要功能:
· 小動(dòng)物手術(shù)術(shù)中監(jiān)測(cè)(保證適當(dāng)?shù)穆樽砩疃?,防止手術(shù)中缺氧)
· 一個(gè)無(wú)創(chuàng)傳感器獲得多個(gè)生命信號(hào) (動(dòng)脈血氧飽和度,心率,呼吸頻率,脈搏幅度,呼吸幅度)
· 心肺功能參數(shù)記錄
· 輸出模擬數(shù)據(jù)
經(jīng)過(guò)驗(yàn)證的準(zhǔn)確度:
使用有創(chuàng)血?dú)獠蓸訙y(cè)量結(jié)果與無(wú)創(chuàng) MouseOx 測(cè)量結(jié)果的比較, 對(duì)比表明, 兩者具有很好的線(xiàn)性關(guān)系。
脈搏、血氧、呼吸等心肺監(jiān)測(cè)參數(shù):
· 脈波頻率在90到900BPM范圍內(nèi)監(jiān)測(cè) (每分鐘心跳, Beat per minutes, BPM)
· 血氧飽和度監(jiān)測(cè)范圍:0% 到100% 動(dòng)脈血氧飽和度;
· 血氧飽和度監(jiān)測(cè)誤差:<1.5% 橫跨整個(gè)監(jiān)測(cè)范圍;
· 血氧飽和度監(jiān)測(cè)反應(yīng)時(shí)間:實(shí)時(shí)報(bào)告動(dòng)脈血氧飽和度, 在每次心跳以后0.72秒屏幕刷新;
· 呼吸頻率監(jiān)測(cè)范圍:每分鐘 25到450 次;
· 監(jiān)測(cè)反應(yīng)時(shí)間:呼吸率每1.7秒向用戶(hù)報(bào)告, 移動(dòng)報(bào)告的值是10次呼吸的的平均數(shù);
· 無(wú)創(chuàng)傷監(jiān)測(cè)脈搏充盈度以估量血流量的變化;
· 脈搏監(jiān)測(cè)范圍:內(nèi)徑0到800微米的徽小血管;
· 監(jiān)測(cè)誤差:< 2.4%橫跨整個(gè)監(jiān)測(cè)范圍;
· 監(jiān)測(cè)反應(yīng)時(shí)間:脈搏充盈度實(shí)時(shí)向用戶(hù)報(bào)告, 在每次心跳以后,0.72秒屏幕刷新,刷新屏幕顯示被測(cè)量的所有脈搏充盈度;
· 無(wú)創(chuàng)傷監(jiān)測(cè)動(dòng)物呼吸幅度的變化;
· 呼吸幅度監(jiān)測(cè)范圍:每分鐘25到450次;
· 呼吸幅度監(jiān)測(cè)反應(yīng)時(shí)間:呼吸率每1.7秒向用戶(hù)報(bào)告, 移動(dòng)報(bào)告的值是10次呼吸的的平均數(shù);
血氧呼吸數(shù)據(jù)采集器:
8通道數(shù)據(jù)采集器
· 可對(duì)1-8只老鼠進(jìn)行脈搏、血氧、呼吸的數(shù)據(jù)測(cè)量
模擬信號(hào)輸出模塊:
搭配模擬信號(hào)輸出模塊實(shí)時(shí)輸出模擬心博:
多鐘測(cè)試探頭可選:
根據(jù)需要,可選擇老鼠清醒狀態(tài)下使用的頸部探頭,麻醉狀態(tài)下使用的足部探頭和大腿探頭
小鼠腿部血氧探頭
小鼠頸部血氧探頭
大鼠足部血氧探頭
新生鼠血氧探頭
磁共振適用模塊及探頭
設(shè)備正在對(duì)清醒活動(dòng)狀態(tài)的大鼠進(jìn)行長(zhǎng)時(shí)間、持續(xù)的數(shù)據(jù)采集
測(cè)量軟件:
實(shí)時(shí)顯示監(jiān)測(cè)數(shù)據(jù),具有診斷模式,具備報(bào)價(jià)功能,數(shù)據(jù)可儲(chǔ)存為T(mén)ext貨Windaq格式
玉研儀器是STARR公司的授權(quán)中國(guó)代理,Starr公司的Mouseox是應(yīng)用于小鼠和大鼠的多功能監(jiān)護(hù)儀,可以測(cè)量脈搏血氧,呼吸,心率,脈搏幅度,呼吸幅度,體溫等參數(shù)。詳情請(qǐng)來(lái)電咨詢(xún)!
部分引用文獻(xiàn):
1. Albéri, L., Lintas, A., Kretz, R., Schwaller, B., & Villa, A. E. (2013). The calcium-binding protein parvalbumin modulates the firing 1 properties of the reticular thalamic nucleus bursting neurons. Journal of neurophysiology, 109(11), 2827-2841.
2. Sonati, T., Reimann, R. R., Falsig, J., Baral, P. K., O’Connor, T., Hornemann, S., Aguzzi, A. (2013). The toxicity of antiprion antibodies is mediated by the flexible tail of the prion protein. Nature, 501(7465), 102-106.
3. Ali, I., O’Brien, P., Kumar, G., Zheng, T., Jones, N. C., Pinault, D., O’Brien, T. J. (2013). Enduring Effects of Early Life Stress on Firing Patterns of Hippocampal and Thalamocortical Neurons in Rats: Implications for Limbic Epilepsy. PLOS ONE, 8(6), e66962.
4. Bell, L. A., Bell, K. A., & McQuiston, A. R. (2013). Synaptic Muscarinic Response Types in Hippocampal CA1 Interneurons Depend on Different Levels of Presynaptic Activity and Different Muscarinic Receptor Subtypes. Neuropharmacology.
5. Bolzoni, F., B?czyk, M., & Jankowska, E. (2013). Subcortical effects of transcranial direct current stimulation (tDCS) in the rat. The Journal of Physiology.
6. Bolzoni, F., B?czyk, M., & Jankowska, E. (2013). Subcortical effects of transcranial direct current stimulation (tDCS) in the rat. The Journal of Physiology.
7. Babaei, P., Tehrani, B. S., & Alizadeh, A. (2013). Effect of BDNF and adipose derived stem cells transplantation on cognitive deficit in Alzheimer model of rats. Journal of Behavioral and Brain Science, 3, 156-161.
8. Gilmartin, M. R., Miyawaki, H., Helmstetter, F. J., & Diba, K. (2013). Prefrontal Activity Links Nonoverlapping Events in Memory. The Journal of Neuroscience, 33(26), 10910-10914.
9. Feng, L., Sametsky, E. A., Gusev, A. G., & Uteshev, V. V. (2012). Responsiveness to nicotine of neurons of the caudal nucleus of the solitary tract correlates with the neuronal projection target. Journal of Neurophysiology, 108(7), 1884-1894.
10. Clarner, T., Diederichs, F., Berger, K., Denecke, B., Gan, L., Van der Valk, P., Kipp, M. (2012). Myelin debris regulates inflammatory responses in an experimental demyelination animal model and multiple sclerosis lesions. Glia, 60(10), 1468-1480.
11. Girardet, C., Bonnet, M. S., Jdir, R., Sadoud, M., Thirion, S., Tardivel, C., Troadec, J. D. (2011). Central inflammation and sickness-like behavior induced by the food contaminant deoxynivalenol: A PGE2-independent mechanism.Toxicological Sciences, 124(1), 179-191.
12. Hru?ka-Plocháň, M., Juhas, S., Juhasova, J., Galik, J., Miyanohara, A., Marsala, M., Motlik, J. (2010). A27 Expression of the human mutant huntingtin in minipig striatum induced formation of EM48+ inclusions in the neuronal nuclei, cytoplasm and processes. Journal of Neurology, Neurosurgery & Psychiatry, 81(Suppl 1), A9-A9.
13. Brooks, S., Jones, L., & Dunnett, S. B. (2010). A29 Frontostriatal pathology in the (C57BL/6J) YAC128 mouse uncovered by the operant delayed alternation task. Journal of Neurology, Neurosurgery & Psychiatry, 81(Suppl 1), A9-A10.
14. Yu, L., Metzger, S., Clemens, L. E., Ehrismann, J., Ott, T., Gu, X., Nguyen, H. P. (2010). A28 Accumulation and aggregation of human mutant huntingtin and neuron atrophy in BAC-HD transgenic rat. Journal of Neurology, Neurosurgery & Psychiatry, 81(Suppl 1), A9-A9.
15. Baxa, M., Juhas, S., Pavlok, A., Vodicka, P., Juhasova, J., Hru?ka-Plocháň, M., Motlik, J. (2010). A26 Transgenic miniature pig as an animal model for Huntington’s disease. Journal of Neurology, Neurosurgery & Psychiatry, 81(Suppl 1), A8-A9.
大小鼠生命體征監(jiān)護(hù)儀是以無(wú)創(chuàng)的方式測(cè)量實(shí)驗(yàn)動(dòng)物(幼鼠,小鼠,大鼠,豚鼠,兔子等小型動(dòng)物)的血氧飽和度,脈搏頻率,呼吸頻率,脈搏幅度,呼吸幅度,體溫等多種參數(shù)。
所有測(cè)量都是通過(guò)一個(gè)無(wú)創(chuàng)的感應(yīng)器完成,準(zhǔn)確、方便、高效。
型號(hào):MouseOx 正在對(duì)麻醉狀態(tài)下的小鼠進(jìn)行測(cè)試
有多種探頭可供選擇:
· 根據(jù)實(shí)驗(yàn)需求:可選擇大鼠型探頭、小鼠型探頭;
· 根據(jù)動(dòng)物狀態(tài):可選擇清醒活動(dòng)狀態(tài)連續(xù)測(cè)量和麻醉(或手術(shù))狀態(tài)測(cè)量探頭;
· 根據(jù)動(dòng)物數(shù)量:有多通道適配器可供選擇,同時(shí)檢測(cè)多只動(dòng)物的生命體征;
· 根據(jù)使用環(huán)境:可選擇核磁環(huán)境適用的無(wú)磁探頭;
主要功能:
· 小動(dòng)物手術(shù)術(shù)中監(jiān)測(cè)(保證適當(dāng)?shù)穆樽砩疃?,防止手術(shù)中缺氧)
· 一個(gè)無(wú)創(chuàng)傳感器獲得多個(gè)生命信號(hào) (動(dòng)脈血氧飽和度,心率,呼吸頻率,脈搏幅度,呼吸幅度)
· 心肺功能參數(shù)記錄
· 輸出模擬數(shù)據(jù)
經(jīng)過(guò)驗(yàn)證的準(zhǔn)確度:
使用有創(chuàng)血?dú)獠蓸訙y(cè)量結(jié)果與無(wú)創(chuàng) MouseOx 測(cè)量結(jié)果的比較, 對(duì)比表明, 兩者具有很好的線(xiàn)性關(guān)系。
脈搏、血氧、呼吸等心肺監(jiān)測(cè)參數(shù):
· 脈波頻率在90到900BPM范圍內(nèi)監(jiān)測(cè) (每分鐘心跳, Beat per minutes, BPM)
· 血氧飽和度監(jiān)測(cè)范圍:0% 到100% 動(dòng)脈血氧飽和度;
· 血氧飽和度監(jiān)測(cè)誤差:<1.5% 橫跨整個(gè)監(jiān)測(cè)范圍;
· 血氧飽和度監(jiān)測(cè)反應(yīng)時(shí)間:實(shí)時(shí)報(bào)告動(dòng)脈血氧飽和度, 在每次心跳以后0.72秒屏幕刷新;
· 呼吸頻率監(jiān)測(cè)范圍:每分鐘 25到450 次;
· 監(jiān)測(cè)反應(yīng)時(shí)間:呼吸率每1.7秒向用戶(hù)報(bào)告, 移動(dòng)報(bào)告的值是10次呼吸的的平均數(shù);
· 無(wú)創(chuàng)傷監(jiān)測(cè)脈搏充盈度以估量血流量的變化;
· 脈搏監(jiān)測(cè)范圍:內(nèi)徑0到800微米的徽小血管;
· 監(jiān)測(cè)誤差:< 2.4%橫跨整個(gè)監(jiān)測(cè)范圍;
· 監(jiān)測(cè)反應(yīng)時(shí)間:脈搏充盈度實(shí)時(shí)向用戶(hù)報(bào)告, 在每次心跳以后,0.72秒屏幕刷新,刷新屏幕顯示被測(cè)量的所有脈搏充盈度;
· 無(wú)創(chuàng)傷監(jiān)測(cè)動(dòng)物呼吸幅度的變化;
· 呼吸幅度監(jiān)測(cè)范圍:每分鐘25到450次;
· 呼吸幅度監(jiān)測(cè)反應(yīng)時(shí)間:呼吸率每1.7秒向用戶(hù)報(bào)告, 移動(dòng)報(bào)告的值是10次呼吸的的平均數(shù);
血氧呼吸數(shù)據(jù)采集器:
8通道數(shù)據(jù)采集器
· 可對(duì)1-8只老鼠進(jìn)行脈搏、血氧、呼吸的數(shù)據(jù)測(cè)量
模擬信號(hào)輸出模塊:
搭配模擬信號(hào)輸出模塊實(shí)時(shí)輸出模擬心博:
多鐘測(cè)試探頭可選:
根據(jù)需要,可選擇老鼠清醒狀態(tài)下使用的頸部探頭,麻醉狀態(tài)下使用的足部探頭和大腿探頭
小鼠腿部血氧探頭
小鼠頸部血氧探頭
大鼠足部血氧探頭
新生鼠血氧探頭
磁共振適用模塊及探頭
設(shè)備正在對(duì)清醒活動(dòng)狀態(tài)的大鼠進(jìn)行長(zhǎng)時(shí)間、持續(xù)的數(shù)據(jù)采集
測(cè)量軟件:
實(shí)時(shí)顯示監(jiān)測(cè)數(shù)據(jù),具有診斷模式,具備報(bào)價(jià)功能,數(shù)據(jù)可儲(chǔ)存為T(mén)ext貨Windaq格式
玉研儀器是STARR公司的授權(quán)中國(guó)代理,Starr公司的Mouseox是應(yīng)用于小鼠和大鼠的多功能監(jiān)護(hù)儀,可以測(cè)量脈搏血氧,呼吸,心率,脈搏幅度,呼吸幅度,體溫等參數(shù)。詳情請(qǐng)來(lái)電咨詢(xún)!
部分引用文獻(xiàn):
1. Albéri, L., Lintas, A., Kretz, R., Schwaller, B., & Villa, A. E. (2013). The calcium-binding protein parvalbumin modulates the firing 1 properties of the reticular thalamic nucleus bursting neurons. Journal of neurophysiology, 109(11), 2827-2841.
2. Sonati, T., Reimann, R. R., Falsig, J., Baral, P. K., O’Connor, T., Hornemann, S., Aguzzi, A. (2013). The toxicity of antiprion antibodies is mediated by the flexible tail of the prion protein. Nature, 501(7465), 102-106.
3. Ali, I., O’Brien, P., Kumar, G., Zheng, T., Jones, N. C., Pinault, D., O’Brien, T. J. (2013). Enduring Effects of Early Life Stress on Firing Patterns of Hippocampal and Thalamocortical Neurons in Rats: Implications for Limbic Epilepsy. PLOS ONE, 8(6), e66962.
4. Bell, L. A., Bell, K. A., & McQuiston, A. R. (2013). Synaptic Muscarinic Response Types in Hippocampal CA1 Interneurons Depend on Different Levels of Presynaptic Activity and Different Muscarinic Receptor Subtypes. Neuropharmacology.
5. Bolzoni, F., B?czyk, M., & Jankowska, E. (2013). Subcortical effects of transcranial direct current stimulation (tDCS) in the rat. The Journal of Physiology.
6. Bolzoni, F., B?czyk, M., & Jankowska, E. (2013). Subcortical effects of transcranial direct current stimulation (tDCS) in the rat. The Journal of Physiology.
7. Babaei, P., Tehrani, B. S., & Alizadeh, A. (2013). Effect of BDNF and adipose derived stem cells transplantation on cognitive deficit in Alzheimer model of rats. Journal of Behavioral and Brain Science, 3, 156-161.
8. Gilmartin, M. R., Miyawaki, H., Helmstetter, F. J., & Diba, K. (2013). Prefrontal Activity Links Nonoverlapping Events in Memory. The Journal of Neuroscience, 33(26), 10910-10914.
9. Feng, L., Sametsky, E. A., Gusev, A. G., & Uteshev, V. V. (2012). Responsiveness to nicotine of neurons of the caudal nucleus of the solitary tract correlates with the neuronal projection target. Journal of Neurophysiology, 108(7), 1884-1894.
10. Clarner, T., Diederichs, F., Berger, K., Denecke, B., Gan, L., Van der Valk, P., Kipp, M. (2012). Myelin debris regulates inflammatory responses in an experimental demyelination animal model and multiple sclerosis lesions. Glia, 60(10), 1468-1480.
11. Girardet, C., Bonnet, M. S., Jdir, R., Sadoud, M., Thirion, S., Tardivel, C., Troadec, J. D. (2011). Central inflammation and sickness-like behavior induced by the food contaminant deoxynivalenol: A PGE2-independent mechanism.Toxicological Sciences, 124(1), 179-191.
12. Hru?ka-Plocháň, M., Juhas, S., Juhasova, J., Galik, J., Miyanohara, A., Marsala, M., Motlik, J. (2010). A27 Expression of the human mutant huntingtin in minipig striatum induced formation of EM48+ inclusions in the neuronal nuclei, cytoplasm and processes. Journal of Neurology, Neurosurgery & Psychiatry, 81(Suppl 1), A9-A9.
13. Brooks, S., Jones, L., & Dunnett, S. B. (2010). A29 Frontostriatal pathology in the (C57BL/6J) YAC128 mouse uncovered by the operant delayed alternation task. Journal of Neurology, Neurosurgery & Psychiatry, 81(Suppl 1), A9-A10.
14. Yu, L., Metzger, S., Clemens, L. E., Ehrismann, J., Ott, T., Gu, X., Nguyen, H. P. (2010). A28 Accumulation and aggregation of human mutant huntingtin and neuron atrophy in BAC-HD transgenic rat. Journal of Neurology, Neurosurgery & Psychiatry, 81(Suppl 1), A9-A9.
15. Baxa, M., Juhas, S., Pavlok, A., Vodicka, P., Juhasova, J., Hru?ka-Plocháň, M., Motlik, J. (2010). A26 Transgenic miniature pig as an animal model for Huntington’s disease. Journal of Neurology, Neurosurgery & Psychiatry, 81(Suppl 1), A8-A9.