取消
清空記錄
歷史記錄
清空記錄
歷史記錄
肺部液體霧化給藥器是上海玉研儀器專門為小鼠、大鼠、豚鼠等小動物研發(fā)設(shè)計,可精確對氣管內(nèi)進行霧化給藥的裝置??蓪⒍恳后w通過集成在不銹鋼毛細插管中的氣溶膠霧化微噴頭霧化,毛細插管可深入動物至支氣管分叉處,實現(xiàn)氣管內(nèi)定量霧化成氣溶膠給藥。相較于傳統(tǒng)口服或注射給藥,藥物可直接作用于肺部,適用于肺部生理、病理、藥理學(xué)研究。
優(yōu)勢特點:
1.適用于小鼠、大鼠、豚鼠、兔子等小動物,也可定制大動物款
2.氣管內(nèi)直接給藥,無首關(guān)消除,藥物全身效應(yīng)小
3.微量精確給藥,藥物用量可達25μL(液體)
4.可用于溶液、小細胞懸浮液、均質(zhì)懸濁液、粘度較低的乳濁液
5.90%藥物霧化直徑≤30μm(液體),可達終末細支氣管甚至呼吸性細支氣管,可均勻分布于大小鼠肺部組織中
6.使用方便,安全穩(wěn)定,采用不銹鋼材質(zhì),堅固穩(wěn)定耐腐蝕
7.具有至少30篇高影響因子SCI文獻發(fā)表,可提供至少1篇IF大于35分的SCI文獻
8.設(shè)備具有CE認證證書或EC符合性證書
9.可用于吸入毒理學(xué)、空氣生物學(xué)、生物危害測試、吸入免疫、吸入治*、藥物研究、環(huán)境評價、危害評估和醫(yī)學(xué)防護等多領(lǐng)域
應(yīng)用領(lǐng)域:
1. 研究肺部吸收機制:通過給予標記的藥物,可以觀察藥物在肺泡和肺間質(zhì)中的吸收和轉(zhuǎn)運過程,也可以準確測定藥物在肺泡、肺間質(zhì)等不同部位的吸收速率和吸收程度,從而建立可靠的藥物吸收模型。
2. 分析肺部代謝過程 :使用肺部給藥技術(shù),可以檢測給藥后藥物在肺內(nèi)代謝產(chǎn)物的形成和變化,幫助分析肺部代謝酶的活性和代謝途徑,也可以分析藥物在肺內(nèi)的代謝動力學(xué),包括代謝速率、代謝產(chǎn)物的形成和清理。
3. 評估肺部清理機制:肺部給藥可作用于肺部,研究肺泡巨噬細胞、肺表面活性物質(zhì)、纖毛運動等對藥物清理的影響。
4. 探索肺部免疫反應(yīng)和屏障功能:通過肺部給予免疫刺激藥物,可以觀察肺部免疫細胞的激*和炎癥反應(yīng)。使用標記的粒子或大分子作為探針,可以評估肺血管內(nèi)皮、上皮等屏障結(jié)構(gòu)對物質(zhì)通透性的調(diào)控作用。
5.建立肺部-全身循環(huán)的藥動學(xué)模型:通過肺部給藥數(shù)據(jù),可以建立詳細的肺部-血漿-全身循環(huán)的藥動學(xué)模型,更準確地預(yù)測藥物在體內(nèi)的吸收、分布、代謝和清理過程。
氣管內(nèi)給藥示意圖
肺纖維化大小鼠模型
傳統(tǒng)經(jīng)典的復(fù)制肺纖維化大小鼠模型方法是通過氣管內(nèi)滴入博萊霉素溶液,其主要方式有兩種:有創(chuàng)氣管切開滴注以及無創(chuàng)經(jīng)口氣管滴注。有創(chuàng)氣管切開滴注會對實驗動物造成外源性損傷,增加了實驗動物失血過多和感*的風(fēng)險,無創(chuàng)經(jīng)口氣管滴注可引起明顯的肺組織損傷與肺纖維化改變,但溶液呈液滴狀進入肺內(nèi),其液滴相對較大,藥物較集中,容易造成動物窒息死亡。
無創(chuàng)經(jīng)口氣管內(nèi)霧化給藥則是一種更新、更有效的促進藥物肺內(nèi)均勻分布的方法,可以將博萊霉素溶液分散為體積更小的液滴,在氣流的推動下,分散的液滴能進入各肺葉,并可到達外周肺組織,因此造成累及各肺葉、出現(xiàn)程度相近的纖維化改變、范圍更彌散的肺組織損傷,更接近人類肺纖維化改變。氣管內(nèi)霧化博萊霉素溶液對小鼠的創(chuàng)傷小,很少出現(xiàn)窒息的情況,且不需穿刺氣管,減少了動物的損傷與痛苦,降低了實驗鼠的死亡率,并且藥物劑量可以準確控制,實驗結(jié)果重復(fù)性好,可作為復(fù)制肺纖維化大小鼠模型的良好方案。
由于大小鼠肺部疾病模型造模指向性強,需要直接將造模藥物均勻輸送到肺組織中。因此包括哮喘模型,肺纖維化模型,急性肺組織損傷模型,病毒感*模型等肺部疾病模型均可使用經(jīng)口氣管內(nèi)霧化給藥造模。
相關(guān)產(chǎn)品推薦:
合適的工具能幫助您更好地完成工作,氣管插管臺和小動物喉鏡是幫助您完成肺部給藥手術(shù)的得力助手,推薦與肺部干粉霧化給藥器配合使用。
氣管插管平臺
氣管插管平臺支持小鼠、大鼠等小動物在一個穩(wěn)定舒適的方位開展氣管插管、藥物灌注及其它類似實驗操作??梢愿鶕?jù)需要進行不同孔位的固定,進行多種操作角度的調(diào)節(jié),滿足不同實驗類型以及實驗動物種類的需求。雙面操作模式,使得肺部給藥操作更為流暢順利,可與我公司小動物呼吸機、麻醉機、肺部定量給藥器、喉鏡等配合使用,也可根據(jù)要求進行定制。
CG-02型
CG-04型
CG-06型
小動物喉鏡
SR310型小動物喉鏡,用于觀察實驗動物的喉部等結(jié)構(gòu),以進行肺部給藥、經(jīng)口氣管插管等操作,適用于小鼠、大鼠、豚鼠,也可根據(jù)您的要求進行定制。采用光纖LED照明系統(tǒng),提供清晰明亮的光線,給觀察喉部、會厭等結(jié)構(gòu)的操作人員提供了更好的視野。前端為不銹鋼的葉型尖部,可隨時拆卸或更換。操作柄的形狀符合人體工程學(xué),使操作更舒適方便。
產(chǎn)品特點:
1.外殼采用金屬材質(zhì),堅固耐用,易清洗
2.操作柄的形狀符合人體工程學(xué)的原理,手握舒適
3.專為大小鼠口腔結(jié)構(gòu)設(shè)計的特制葉片,解決了因口腔太小難以插管的難題
4.具有大鼠葉片和小鼠葉片供選擇
5.葉片采用不銹鋼材質(zhì),很大限度地減少腐蝕,確保耐用
6.電池采用兩節(jié)5號電池,方便更換
大小鼠進口光纖葉片
部分用戶名單:
參考文獻:
1.Zhu, Chuanda, et al. "An elastase nanocomplex with metal cofactors for enhancement of target protein cleavage activity and synergistic antitumor effect." Chemical Engineering Journal (2024): 149902.doi:10.1016/j.cej.2024.149902.
2.Zhu, Chuanda, et al. "An elastase nanocomplex with metal cofactors for enhancement of target protein cleavage activity and synergistic antitumor effect." Chemical Engineering Journal (2024): 149902,doi:10.1016/j.cej.2024.149902
3.Sun, Xiaolin et al. “GSTP alleviates acute lung injury by S-glutathionylation of KEAP1 and subsequent activation of NRF2 pathway.” Redox biology vol. 71 (2024): 103116. doi:10.1016/j.redox.2024.103116
4.Han, Meng-Meng et al. “Inhaled nanoparticles for treating idiopathic pulmonary fibrosis by inhibiting honeycomb cyst and alveoli interstitium remodeling.” Journal of controlled release : official journal of the Controlled Release Society vol. 366 (2024): 732-745. doi:10.1016/j.jconrel.2024.01.032
5.Feng, Xin et al. “First magnetic particle imaging to assess pulmonary vascular leakage in vivo in the acutely injured and fibrotic lung.” Bioengineering & translational medicine vol. 9,2 e10626. 29 Nov. 2023, doi:10.1002/btm2.10626
6.Fan, Weiyang et al. “Naringenin regulates cigarette smoke extract-induced extracellular vesicles from alveolar macrophage to attenuate the mouse lung epithelial ferroptosis through activating EV miR-23a-3p/ACSL4 axis.” Phytomedicine : international journal of phytotherapy and phytopharmacology vol. 124 (2024): 155256. doi:10.1016/j.phymed.2023.155256
7.Li, Cheng et al. “Broad neutralization of SARS-CoV-2 variants by an inhalable bispecific single-domain antibody.” Cell vol. 185,8 (2022): 1389-1401.e18. doi:10.1016/j.cell.2022.03.009
8.Liu, Chang et al. “An Inhalable Hybrid Biomimetic Nanoplatform for Sequential Drug Release and Remodeling Lung Immune Homeostasis in Acute Lung Injury Treatment.” ACS nano vol. 17,12 (2023): 11626-11644. doi:10.1021/acsnano.3c02075
9.Peng, Boya et al. “Robust delivery of RIG-I agonists using extracellular vesicles for anti-cancer immunotherapy.” Journal of extracellular vesicles vol. 11,4 (2022): e12187. doi:10.1002/jev2.12187
10.Yang, Guang, et al. "Noncovalent co-assembly of aminoglycoside antibiotics@ tannic acid nanoparticles for off-the-shelf treatment of pulmonary and cutaneous infections." Chemical Engineering Journal 474 (2023): 145703.do:10.1016/j.cej.2023.145703.
11.Santin, Yohan et al. “Inhalation of acidic nanoparticles prevents doxorubicin cardiotoxicity through improvement of lysosomal function.” Theranostics vol. 13,15 5435-5451. 2 Oct. 2023, doi:10.7150/thno.86310
12.Sun, Han et al. “Application of Lung-Targeted Lipid Nanoparticle-delivered mRNA of soluble PD-L1 via SORT Technology in Acute Respiratory Distress Syndrome.” Theranostics vol. 13,14 4974-4992. 4 Sep. 2023, doi:10.7150/thno.86466
13.Yue, Dayong et al. “Diesel exhaust PM2.5 greatly deteriorates fibrosis process in pre-existing pulmonary fibrosis via ferroptosis.” Environment international vol. 171 (2023): 107706. doi:10.1016/j.envint.2022.107706
14.Zhang, Mengjun et al. “Airway epithelial cell-specific delivery of lipid nanoparticles loading siRNA for asthma treatment.” Journal of controlled release : official journal of the Controlled Release Society vol. 352 (2022): 422-437. doi:10.1016/j.jconrel.2022.10.020
15.Gu, Peiyu et al. “Protective function of interleukin-22 in pulmonary fibrosis.” Clinical and translational medicine vol. 11,8 (2021): e509. doi:10.1002/ctm2.509
16.Wu, Lan et al. “Poly(lactide-co-glycolide) Nanoparticles Mediate Sustained Gene Silencing and Improved Biocompatibility of siRNA Delivery Systems in Mouse Lungs after Pulmonary Administration.” ACS applied materials & interfaces vol. 13,3 (2021): 3722-3737. doi:10.1021/acsami.0c21259
17.Tian, Xidong et al. “Pulmonary Delivery of Reactive Oxygen Species/Glutathione-Responsive Paclitaxel Dimeric Nanoparticles Improved Therapeutic Indices against Metastatic Lung Cancer.” ACS applied materials & interfaces vol. 13,48 (2021): 56858-56872. doi:10.1021/acsami.1c16351
18.Lin, Wei-Ting et al. “Modulation of experimental acute lung injury by exosomal miR-7704 from mesenchymal stromal cells acts through M2 macrophage polarization.” Molecular therapy. Nucleic acids vol. 35,1 102102. 14 Dec. 2023, doi:10.1016/j.omtn.2023.102102
19.Yang, Huilin et al. “Triptolide dose-dependently improves LPS-induced alveolar hypercoagulation and fibrinolysis inhibition through NF-κB inactivation in ARDS mice.” Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie vol. 139 (2021): 111569. doi:10.1016/j.biopha.2021.111569
20.Feng, Xin et al. “First magnetic particle imaging to assess pulmonary vascular leakage in vivo in the acutely injured and fibrotic lung.” Bioengineering & translational medicine vol. 9,2 e10626. 29 Nov. 2023, doi:10.1002/btm2.10626
21.Xiao, Xue et al. “SerpinB1 is required for Rev-erbα-mediated protection against acute lung injury induced by lipopolysaccharide-in mice.” British journal of pharmacology vol. 180,24 (2023): 3234-3253. doi:10.1111/bph.16175
22.Su, Ruonan et al. “Venetoclax nanomedicine alleviates acute lung injury via increasing neutrophil apoptosis.” Biomaterials science vol. 9,13 (2021): 4746-4754. doi:10.1039/d1bm00481f
23.Xu, Yingying et al. “PEGylated pH-responsive peptide-mRNA nano self-assemblies enhance the pulmonary delivery efficiency and safety of aerosolized mRNA.” Drug delivery vol. 30,1 (2023): 2219870. doi:10.1080/10717544.2023.2219870
24.Wu, Yanqi et al. “SN50 attenuates alveolar hypercoagulation and fibrinolysis inhibition in acute respiratory distress syndrome mice through inhibiting NF-κB p65 translocation.” Respiratory research vol. 21,1 130. 27 May. 2020, doi:10.1186/s12931-020-01372-6
25.Chen, Huanjie et al. “Enhanced secretion of hepatocyte growth factor in human umbilical cord mesenchymal stem cells ameliorates pulmonary fibrosis induced by bleomycin in rats.” Frontiers in pharmacology vol. 13 1070736. 6 Jan. 2023, doi:10.3389/fphar.2022.1070736
肺部液體霧化給藥器是上海玉研儀器專門為小鼠、大鼠、豚鼠等小動物研發(fā)設(shè)計,可精確對氣管內(nèi)進行霧化給藥的裝置??蓪⒍恳后w通過集成在不銹鋼毛細插管中的氣溶膠霧化微噴頭霧化,毛細插管可深入動物至支氣管分叉處,實現(xiàn)氣管內(nèi)定量霧化成氣溶膠給藥。相較于傳統(tǒng)口服或注射給藥,藥物可直接作用于肺部,適用于肺部生理、病理、藥理學(xué)研究。
優(yōu)勢特點:
1.適用于小鼠、大鼠、豚鼠、兔子等小動物,也可定制大動物款
2.氣管內(nèi)直接給藥,無首關(guān)消除,藥物全身效應(yīng)小
3.微量精確給藥,藥物用量可達25μL(液體)
4.可用于溶液、小細胞懸浮液、均質(zhì)懸濁液、粘度較低的乳濁液
5.90%藥物霧化直徑≤30μm(液體),可達終末細支氣管甚至呼吸性細支氣管,可均勻分布于大小鼠肺部組織中
6.使用方便,安全穩(wěn)定,采用不銹鋼材質(zhì),堅固穩(wěn)定耐腐蝕
7.具有至少30篇高影響因子SCI文獻發(fā)表,可提供至少1篇IF大于35分的SCI文獻
8.設(shè)備具有CE認證證書或EC符合性證書
9.可用于吸入毒理學(xué)、空氣生物學(xué)、生物危害測試、吸入免疫、吸入治*、藥物研究、環(huán)境評價、危害評估和醫(yī)學(xué)防護等多領(lǐng)域
應(yīng)用領(lǐng)域:
1. 研究肺部吸收機制:通過給予標記的藥物,可以觀察藥物在肺泡和肺間質(zhì)中的吸收和轉(zhuǎn)運過程,也可以準確測定藥物在肺泡、肺間質(zhì)等不同部位的吸收速率和吸收程度,從而建立可靠的藥物吸收模型。
2. 分析肺部代謝過程 :使用肺部給藥技術(shù),可以檢測給藥后藥物在肺內(nèi)代謝產(chǎn)物的形成和變化,幫助分析肺部代謝酶的活性和代謝途徑,也可以分析藥物在肺內(nèi)的代謝動力學(xué),包括代謝速率、代謝產(chǎn)物的形成和清理。
3. 評估肺部清理機制:肺部給藥可作用于肺部,研究肺泡巨噬細胞、肺表面活性物質(zhì)、纖毛運動等對藥物清理的影響。
4. 探索肺部免疫反應(yīng)和屏障功能:通過肺部給予免疫刺激藥物,可以觀察肺部免疫細胞的激*和炎癥反應(yīng)。使用標記的粒子或大分子作為探針,可以評估肺血管內(nèi)皮、上皮等屏障結(jié)構(gòu)對物質(zhì)通透性的調(diào)控作用。
5.建立肺部-全身循環(huán)的藥動學(xué)模型:通過肺部給藥數(shù)據(jù),可以建立詳細的肺部-血漿-全身循環(huán)的藥動學(xué)模型,更準確地預(yù)測藥物在體內(nèi)的吸收、分布、代謝和清理過程。
氣管內(nèi)給藥示意圖
肺纖維化大小鼠模型
傳統(tǒng)經(jīng)典的復(fù)制肺纖維化大小鼠模型方法是通過氣管內(nèi)滴入博萊霉素溶液,其主要方式有兩種:有創(chuàng)氣管切開滴注以及無創(chuàng)經(jīng)口氣管滴注。有創(chuàng)氣管切開滴注會對實驗動物造成外源性損傷,增加了實驗動物失血過多和感*的風(fēng)險,無創(chuàng)經(jīng)口氣管滴注可引起明顯的肺組織損傷與肺纖維化改變,但溶液呈液滴狀進入肺內(nèi),其液滴相對較大,藥物較集中,容易造成動物窒息死亡。
無創(chuàng)經(jīng)口氣管內(nèi)霧化給藥則是一種更新、更有效的促進藥物肺內(nèi)均勻分布的方法,可以將博萊霉素溶液分散為體積更小的液滴,在氣流的推動下,分散的液滴能進入各肺葉,并可到達外周肺組織,因此造成累及各肺葉、出現(xiàn)程度相近的纖維化改變、范圍更彌散的肺組織損傷,更接近人類肺纖維化改變。氣管內(nèi)霧化博萊霉素溶液對小鼠的創(chuàng)傷小,很少出現(xiàn)窒息的情況,且不需穿刺氣管,減少了動物的損傷與痛苦,降低了實驗鼠的死亡率,并且藥物劑量可以準確控制,實驗結(jié)果重復(fù)性好,可作為復(fù)制肺纖維化大小鼠模型的良好方案。
由于大小鼠肺部疾病模型造模指向性強,需要直接將造模藥物均勻輸送到肺組織中。因此包括哮喘模型,肺纖維化模型,急性肺組織損傷模型,病毒感*模型等肺部疾病模型均可使用經(jīng)口氣管內(nèi)霧化給藥造模。
相關(guān)產(chǎn)品推薦:
合適的工具能幫助您更好地完成工作,氣管插管臺和小動物喉鏡是幫助您完成肺部給藥手術(shù)的得力助手,推薦與肺部干粉霧化給藥器配合使用。
氣管插管平臺
氣管插管平臺支持小鼠、大鼠等小動物在一個穩(wěn)定舒適的方位開展氣管插管、藥物灌注及其它類似實驗操作。可以根據(jù)需要進行不同孔位的固定,進行多種操作角度的調(diào)節(jié),滿足不同實驗類型以及實驗動物種類的需求。雙面操作模式,使得肺部給藥操作更為流暢順利,可與我公司小動物呼吸機、麻醉機、肺部定量給藥器、喉鏡等配合使用,也可根據(jù)要求進行定制。
CG-02型
CG-04型
CG-06型
小動物喉鏡
SR310型小動物喉鏡,用于觀察實驗動物的喉部等結(jié)構(gòu),以進行肺部給藥、經(jīng)口氣管插管等操作,適用于小鼠、大鼠、豚鼠,也可根據(jù)您的要求進行定制。采用光纖LED照明系統(tǒng),提供清晰明亮的光線,給觀察喉部、會厭等結(jié)構(gòu)的操作人員提供了更好的視野。前端為不銹鋼的葉型尖部,可隨時拆卸或更換。操作柄的形狀符合人體工程學(xué),使操作更舒適方便。
產(chǎn)品特點:
1.外殼采用金屬材質(zhì),堅固耐用,易清洗
2.操作柄的形狀符合人體工程學(xué)的原理,手握舒適
3.專為大小鼠口腔結(jié)構(gòu)設(shè)計的特制葉片,解決了因口腔太小難以插管的難題
4.具有大鼠葉片和小鼠葉片供選擇
5.葉片采用不銹鋼材質(zhì),很大限度地減少腐蝕,確保耐用
6.電池采用兩節(jié)5號電池,方便更換
大小鼠進口光纖葉片
部分用戶名單:
參考文獻:
1.Zhu, Chuanda, et al. "An elastase nanocomplex with metal cofactors for enhancement of target protein cleavage activity and synergistic antitumor effect." Chemical Engineering Journal (2024): 149902.doi:10.1016/j.cej.2024.149902.
2.Zhu, Chuanda, et al. "An elastase nanocomplex with metal cofactors for enhancement of target protein cleavage activity and synergistic antitumor effect." Chemical Engineering Journal (2024): 149902,doi:10.1016/j.cej.2024.149902
3.Sun, Xiaolin et al. “GSTP alleviates acute lung injury by S-glutathionylation of KEAP1 and subsequent activation of NRF2 pathway.” Redox biology vol. 71 (2024): 103116. doi:10.1016/j.redox.2024.103116
4.Han, Meng-Meng et al. “Inhaled nanoparticles for treating idiopathic pulmonary fibrosis by inhibiting honeycomb cyst and alveoli interstitium remodeling.” Journal of controlled release : official journal of the Controlled Release Society vol. 366 (2024): 732-745. doi:10.1016/j.jconrel.2024.01.032
5.Feng, Xin et al. “First magnetic particle imaging to assess pulmonary vascular leakage in vivo in the acutely injured and fibrotic lung.” Bioengineering & translational medicine vol. 9,2 e10626. 29 Nov. 2023, doi:10.1002/btm2.10626
6.Fan, Weiyang et al. “Naringenin regulates cigarette smoke extract-induced extracellular vesicles from alveolar macrophage to attenuate the mouse lung epithelial ferroptosis through activating EV miR-23a-3p/ACSL4 axis.” Phytomedicine : international journal of phytotherapy and phytopharmacology vol. 124 (2024): 155256. doi:10.1016/j.phymed.2023.155256
7.Li, Cheng et al. “Broad neutralization of SARS-CoV-2 variants by an inhalable bispecific single-domain antibody.” Cell vol. 185,8 (2022): 1389-1401.e18. doi:10.1016/j.cell.2022.03.009
8.Liu, Chang et al. “An Inhalable Hybrid Biomimetic Nanoplatform for Sequential Drug Release and Remodeling Lung Immune Homeostasis in Acute Lung Injury Treatment.” ACS nano vol. 17,12 (2023): 11626-11644. doi:10.1021/acsnano.3c02075
9.Peng, Boya et al. “Robust delivery of RIG-I agonists using extracellular vesicles for anti-cancer immunotherapy.” Journal of extracellular vesicles vol. 11,4 (2022): e12187. doi:10.1002/jev2.12187
10.Yang, Guang, et al. "Noncovalent co-assembly of aminoglycoside antibiotics@ tannic acid nanoparticles for off-the-shelf treatment of pulmonary and cutaneous infections." Chemical Engineering Journal 474 (2023): 145703.do:10.1016/j.cej.2023.145703.
11.Santin, Yohan et al. “Inhalation of acidic nanoparticles prevents doxorubicin cardiotoxicity through improvement of lysosomal function.” Theranostics vol. 13,15 5435-5451. 2 Oct. 2023, doi:10.7150/thno.86310
12.Sun, Han et al. “Application of Lung-Targeted Lipid Nanoparticle-delivered mRNA of soluble PD-L1 via SORT Technology in Acute Respiratory Distress Syndrome.” Theranostics vol. 13,14 4974-4992. 4 Sep. 2023, doi:10.7150/thno.86466
13.Yue, Dayong et al. “Diesel exhaust PM2.5 greatly deteriorates fibrosis process in pre-existing pulmonary fibrosis via ferroptosis.” Environment international vol. 171 (2023): 107706. doi:10.1016/j.envint.2022.107706
14.Zhang, Mengjun et al. “Airway epithelial cell-specific delivery of lipid nanoparticles loading siRNA for asthma treatment.” Journal of controlled release : official journal of the Controlled Release Society vol. 352 (2022): 422-437. doi:10.1016/j.jconrel.2022.10.020
15.Gu, Peiyu et al. “Protective function of interleukin-22 in pulmonary fibrosis.” Clinical and translational medicine vol. 11,8 (2021): e509. doi:10.1002/ctm2.509
16.Wu, Lan et al. “Poly(lactide-co-glycolide) Nanoparticles Mediate Sustained Gene Silencing and Improved Biocompatibility of siRNA Delivery Systems in Mouse Lungs after Pulmonary Administration.” ACS applied materials & interfaces vol. 13,3 (2021): 3722-3737. doi:10.1021/acsami.0c21259
17.Tian, Xidong et al. “Pulmonary Delivery of Reactive Oxygen Species/Glutathione-Responsive Paclitaxel Dimeric Nanoparticles Improved Therapeutic Indices against Metastatic Lung Cancer.” ACS applied materials & interfaces vol. 13,48 (2021): 56858-56872. doi:10.1021/acsami.1c16351
18.Lin, Wei-Ting et al. “Modulation of experimental acute lung injury by exosomal miR-7704 from mesenchymal stromal cells acts through M2 macrophage polarization.” Molecular therapy. Nucleic acids vol. 35,1 102102. 14 Dec. 2023, doi:10.1016/j.omtn.2023.102102
19.Yang, Huilin et al. “Triptolide dose-dependently improves LPS-induced alveolar hypercoagulation and fibrinolysis inhibition through NF-κB inactivation in ARDS mice.” Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie vol. 139 (2021): 111569. doi:10.1016/j.biopha.2021.111569
20.Feng, Xin et al. “First magnetic particle imaging to assess pulmonary vascular leakage in vivo in the acutely injured and fibrotic lung.” Bioengineering & translational medicine vol. 9,2 e10626. 29 Nov. 2023, doi:10.1002/btm2.10626
21.Xiao, Xue et al. “SerpinB1 is required for Rev-erbα-mediated protection against acute lung injury induced by lipopolysaccharide-in mice.” British journal of pharmacology vol. 180,24 (2023): 3234-3253. doi:10.1111/bph.16175
22.Su, Ruonan et al. “Venetoclax nanomedicine alleviates acute lung injury via increasing neutrophil apoptosis.” Biomaterials science vol. 9,13 (2021): 4746-4754. doi:10.1039/d1bm00481f
23.Xu, Yingying et al. “PEGylated pH-responsive peptide-mRNA nano self-assemblies enhance the pulmonary delivery efficiency and safety of aerosolized mRNA.” Drug delivery vol. 30,1 (2023): 2219870. doi:10.1080/10717544.2023.2219870
24.Wu, Yanqi et al. “SN50 attenuates alveolar hypercoagulation and fibrinolysis inhibition in acute respiratory distress syndrome mice through inhibiting NF-κB p65 translocation.” Respiratory research vol. 21,1 130. 27 May. 2020, doi:10.1186/s12931-020-01372-6
25.Chen, Huanjie et al. “Enhanced secretion of hepatocyte growth factor in human umbilical cord mesenchymal stem cells ameliorates pulmonary fibrosis induced by bleomycin in rats.” Frontiers in pharmacology vol. 13 1070736. 6 Jan. 2023, doi:10.3389/fphar.2022.1070736