取消
清空記錄
歷史記錄
清空記錄
歷史記錄
用于測量嚙齒動物疼痛模型中關(guān)節(jié)、肌肉、尾巴等部位機(jī)械壓痛閾值的一種新穎、易于使用的工具。設(shè)備可直接量化對動物機(jī)械壓痛后的動物反應(yīng),專為關(guān)節(jié)疼痛的機(jī)械刺激評估而設(shè)計并得到驗證,適合于關(guān)節(jié)炎等方面的應(yīng)用。
關(guān)節(jié)的慢性衰弱性疼痛與炎癥侵襲有關(guān)。此前在動物模型中對關(guān)節(jié)炎疼痛的量化主要采用間接的方法如動物體重分布(雙足平衡法)。間接式方法雖然與關(guān)節(jié)的程度有較好的相關(guān)性,但是無法確定疼痛閾值。
Ugo Basile壓力應(yīng)用測試儀可直接量化刺激關(guān)節(jié)動物的反應(yīng),并自動讀取閾值大小。操作者只需將特定力傳感器佩戴在拇指上,向大鼠或小鼠關(guān)節(jié)等測試部位施加壓力,觀察并測量動物反應(yīng)(通常是四肢縮回)及疼痛閾值。
主機(jī)可設(shè)置0-500g、0-1500g不同量程范圍,測試靈敏度0.1g,適用于各種物種及應(yīng)用情境。軟件能夠?qū)嶒炄藛T壓力施加過程實現(xiàn)可視化觀察,提高壓力施加的可控性和可重復(fù)性。
優(yōu)勢特征:
一、平面探頭設(shè)計,精確捕捉真實關(guān)節(jié)閾
在關(guān)節(jié)炎疼痛研究中,von Frey纖維絲、電子刺痛儀等刺痛方式可能會激淺表皮膚神經(jīng)末梢的痛覺而非真實深層關(guān)節(jié)疼痛過敏,PAM平面探頭提高關(guān)節(jié)過敏測試的準(zhǔn)確性。按壓方式模擬人體關(guān)節(jié)壓痛研究,是動物疼痛測試技術(shù)性創(chuàng)新,在藥物鎮(zhèn)痛和篩選方面應(yīng)用廣。
二、可設(shè)置自動、手動記錄方式,存儲容量大
對測試部位進(jìn)行按壓時,一旦動物出現(xiàn)縮足反應(yīng),測試結(jié)束,電子控制器實時記錄測試結(jié)果并保存,存儲容量可達(dá)上千個。PAM的另一個獨特設(shè)計為實時手動記錄踏板,在特定情況需要手動記錄時,研究者可自行踩下踏板結(jié)束測試,并保存數(shù)據(jù)。
三、可設(shè)定施力斜率,施力曲線可直觀比較
斜率當(dāng)力以線性增加穩(wěn)定情況,將恒定的斜率視為參考值,用戶在施力時可嘗試匹配設(shè)定施力斜率,可提高實驗結(jié)果準(zhǔn)確度。多個測試結(jié)束后,軟件可形成力隨時間變化的曲線圖,可將數(shù)據(jù)保存為Excle格式,再由市面上大多數(shù)可用的統(tǒng)計分析軟件進(jìn)行分析。
四、拓展性強(qiáng),應(yīng)用范圍廣。
PAM可進(jìn)行其他動物如兔子、豚鼠等動物進(jìn)行關(guān)節(jié)測試。選配鼠爪壓力器,可將PAM快速轉(zhuǎn)化為Randall-Selitto壓痛法,測試各類動物的爪子、尾巴、肌肉疼痛情況。
軟件測試:
應(yīng)用領(lǐng)域:
壓力應(yīng)用測試儀已用于多物種的關(guān)節(jié)、肌肉、尾巴等部位的損傷和炎癥模型中,如風(fēng)濕病、外周動脈疾病、肌肉痛、神經(jīng)病變、運動功能障礙,可幫助進(jìn)行疼痛分子研究和異常性疼痛、痛覺過敏的藥物篩選。
型號規(guī)格:
38500 | 壓力應(yīng)用測試儀完整套裝,包含主機(jī)、大鼠和小鼠傳感器、腳踏板、軟件等 |
38500-006 | 鼠爪壓力器(選配) |
參考文獻(xiàn):
1.Mlost J, Kac P, K?dziora M, Starowicz K. Antinociceptive and chondroprotective effects of prolonged β-caryophyllene treatment in the animal model of osteoarthritis: Focus on tolerance development. Neuropharmacology. 2022;204:108908. doi:10.1016/j.neuropharm.2021.108908
2.Ishihara S, Obeidat AM, Wokosin DL, et al. The role of intra-articular neuronal CCR2 receptors in knee joint pain associated with experimental osteoarthritis in mice. Arthritis Res Ther. 2021;23(1):103. Published 2021 Apr 7. doi:10.1186/s13075-021-02486-y
3.Zaki S, Smith MM, Little CB. Pathology-pain relationships in different osteoarthritis animal model phenotypes: it matters what you measure, when you measure, and how you got there. Osteoarthritis Cartilage. 2021;29(10):1448-1461. doi:10.1016/j.joca.2021.03.023
4.Tschon M, Salamanna F, Martini L, et al. Boosting the Intra-Articular Efficacy of Low Dose Corticosteroid through a Biopolymeric Matrix: An In Vivo Model of Osteoarthritis. Cells. 2020;9(7):1571. Published 2020 Jun 28. doi:10.3390/cells9071571
5.Paniagua N, Sánchez-Robles EM, Bagues A, Martín-Fontelles MI, Goicoechea C, Girón R. Behavior and electrophysiology studies of the peripheral neuropathy induced by individual and co-administration of paclitaxel and oxaliplatin in rat. Life Sci. 2021;277:119397. doi:10.1016/j.lfs.2021.119397
6.Carmon I, Zecharyahu L, Elayyan J, et al. HU308 Mitigates Osteoarthritis by Stimulating Sox9-Related Networks of Carbohydrate Metabolism. J Bone Miner Res. 2023;38(1):154-170. doi:10.1002/jbmr.4741
7.Phie J, Krishna SM, Kinobe R, et al. Effects of quercetin on exercise performance, physical activity and blood supply in a novel model of sustained hind-limb ischaemia. BJS Open. 2021;5(1):zraa059. doi:10.1093/bjsopen/zraa059
8.Krishna SM, Omer SM, Li J, Morton SK, Jose RJ, Golledge J. Development of a two-stage limb ischemia model to better simulate human peripheral artery disease. Sci Rep. 2020;10(1):3449. Published 2020 Feb 26. doi:10.1038/s41598-020-60352-4
9.Gao W, Shen L, Long DD, et al. Angiotensin II type 2 receptor pharmacological agonist, C21, reduces the inflammation and pain hypersensitivity in mice with joint inflammatory pain. Int Immunopharmacol. 2022;110:108921. doi:10.1016/j.intimp.2022.108921
Leuchtweis J, Segond von Banchet G, Eitner A, Ebbinghaus M, Schaible HG. Pain-related behaviors associated with persistence of mechanical hyperalgesia after antigen-induced arthritis in rats. Pain. 2020;161(7):1571-1583. doi:10.1097/j.pain.0000000000001852
用于測量嚙齒動物疼痛模型中關(guān)節(jié)、肌肉、尾巴等部位機(jī)械壓痛閾值的一種新穎、易于使用的工具。設(shè)備可直接量化對動物機(jī)械壓痛后的動物反應(yīng),專為關(guān)節(jié)疼痛的機(jī)械刺激評估而設(shè)計并得到驗證,適合于關(guān)節(jié)炎等方面的應(yīng)用。
關(guān)節(jié)的慢性衰弱性疼痛與炎癥侵襲有關(guān)。此前在動物模型中對關(guān)節(jié)炎疼痛的量化主要采用間接的方法如動物體重分布(雙足平衡法)。間接式方法雖然與關(guān)節(jié)的程度有較好的相關(guān)性,但是無法確定疼痛閾值。
Ugo Basile壓力應(yīng)用測試儀可直接量化刺激關(guān)節(jié)動物的反應(yīng),并自動讀取閾值大小。操作者只需將特定力傳感器佩戴在拇指上,向大鼠或小鼠關(guān)節(jié)等測試部位施加壓力,觀察并測量動物反應(yīng)(通常是四肢縮回)及疼痛閾值。
主機(jī)可設(shè)置0-500g、0-1500g不同量程范圍,測試靈敏度0.1g,適用于各種物種及應(yīng)用情境。軟件能夠?qū)嶒炄藛T壓力施加過程實現(xiàn)可視化觀察,提高壓力施加的可控性和可重復(fù)性。
優(yōu)勢特征:
一、平面探頭設(shè)計,精確捕捉真實關(guān)節(jié)閾
在關(guān)節(jié)炎疼痛研究中,von Frey纖維絲、電子刺痛儀等刺痛方式可能會激淺表皮膚神經(jīng)末梢的痛覺而非真實深層關(guān)節(jié)疼痛過敏,PAM平面探頭提高關(guān)節(jié)過敏測試的準(zhǔn)確性。按壓方式模擬人體關(guān)節(jié)壓痛研究,是動物疼痛測試技術(shù)性創(chuàng)新,在藥物鎮(zhèn)痛和篩選方面應(yīng)用廣。
二、可設(shè)置自動、手動記錄方式,存儲容量大
對測試部位進(jìn)行按壓時,一旦動物出現(xiàn)縮足反應(yīng),測試結(jié)束,電子控制器實時記錄測試結(jié)果并保存,存儲容量可達(dá)上千個。PAM的另一個獨特設(shè)計為實時手動記錄踏板,在特定情況需要手動記錄時,研究者可自行踩下踏板結(jié)束測試,并保存數(shù)據(jù)。
三、可設(shè)定施力斜率,施力曲線可直觀比較
斜率當(dāng)力以線性增加穩(wěn)定情況,將恒定的斜率視為參考值,用戶在施力時可嘗試匹配設(shè)定施力斜率,可提高實驗結(jié)果準(zhǔn)確度。多個測試結(jié)束后,軟件可形成力隨時間變化的曲線圖,可將數(shù)據(jù)保存為Excle格式,再由市面上大多數(shù)可用的統(tǒng)計分析軟件進(jìn)行分析。
四、拓展性強(qiáng),應(yīng)用范圍廣。
PAM可進(jìn)行其他動物如兔子、豚鼠等動物進(jìn)行關(guān)節(jié)測試。選配鼠爪壓力器,可將PAM快速轉(zhuǎn)化為Randall-Selitto壓痛法,測試各類動物的爪子、尾巴、肌肉疼痛情況。
軟件測試:
應(yīng)用領(lǐng)域:
壓力應(yīng)用測試儀已用于多物種的關(guān)節(jié)、肌肉、尾巴等部位的損傷和炎癥模型中,如風(fēng)濕病、外周動脈疾病、肌肉痛、神經(jīng)病變、運動功能障礙,可幫助進(jìn)行疼痛分子研究和異常性疼痛、痛覺過敏的藥物篩選。
型號規(guī)格:
38500 | 壓力應(yīng)用測試儀完整套裝,包含主機(jī)、大鼠和小鼠傳感器、腳踏板、軟件等 |
38500-006 | 鼠爪壓力器(選配) |
參考文獻(xiàn):
1.Mlost J, Kac P, K?dziora M, Starowicz K. Antinociceptive and chondroprotective effects of prolonged β-caryophyllene treatment in the animal model of osteoarthritis: Focus on tolerance development. Neuropharmacology. 2022;204:108908. doi:10.1016/j.neuropharm.2021.108908
2.Ishihara S, Obeidat AM, Wokosin DL, et al. The role of intra-articular neuronal CCR2 receptors in knee joint pain associated with experimental osteoarthritis in mice. Arthritis Res Ther. 2021;23(1):103. Published 2021 Apr 7. doi:10.1186/s13075-021-02486-y
3.Zaki S, Smith MM, Little CB. Pathology-pain relationships in different osteoarthritis animal model phenotypes: it matters what you measure, when you measure, and how you got there. Osteoarthritis Cartilage. 2021;29(10):1448-1461. doi:10.1016/j.joca.2021.03.023
4.Tschon M, Salamanna F, Martini L, et al. Boosting the Intra-Articular Efficacy of Low Dose Corticosteroid through a Biopolymeric Matrix: An In Vivo Model of Osteoarthritis. Cells. 2020;9(7):1571. Published 2020 Jun 28. doi:10.3390/cells9071571
5.Paniagua N, Sánchez-Robles EM, Bagues A, Martín-Fontelles MI, Goicoechea C, Girón R. Behavior and electrophysiology studies of the peripheral neuropathy induced by individual and co-administration of paclitaxel and oxaliplatin in rat. Life Sci. 2021;277:119397. doi:10.1016/j.lfs.2021.119397
6.Carmon I, Zecharyahu L, Elayyan J, et al. HU308 Mitigates Osteoarthritis by Stimulating Sox9-Related Networks of Carbohydrate Metabolism. J Bone Miner Res. 2023;38(1):154-170. doi:10.1002/jbmr.4741
7.Phie J, Krishna SM, Kinobe R, et al. Effects of quercetin on exercise performance, physical activity and blood supply in a novel model of sustained hind-limb ischaemia. BJS Open. 2021;5(1):zraa059. doi:10.1093/bjsopen/zraa059
8.Krishna SM, Omer SM, Li J, Morton SK, Jose RJ, Golledge J. Development of a two-stage limb ischemia model to better simulate human peripheral artery disease. Sci Rep. 2020;10(1):3449. Published 2020 Feb 26. doi:10.1038/s41598-020-60352-4
9.Gao W, Shen L, Long DD, et al. Angiotensin II type 2 receptor pharmacological agonist, C21, reduces the inflammation and pain hypersensitivity in mice with joint inflammatory pain. Int Immunopharmacol. 2022;110:108921. doi:10.1016/j.intimp.2022.108921
Leuchtweis J, Segond von Banchet G, Eitner A, Ebbinghaus M, Schaible HG. Pain-related behaviors associated with persistence of mechanical hyperalgesia after antigen-induced arthritis in rats. Pain. 2020;161(7):1571-1583. doi:10.1097/j.pain.0000000000001852